The USAGE of palm kernel shells

The palm kernel shells used to be initially dumped in the open thereby impacting the environment negatively without any economic benefit. However, over time, palm oil mills in Southeast Asia and elsewhere realized their brilliant properties as a fuel and that they can easily replace coal as an industrial fuel for generating heat and steam.

Major Applications

Nowadays, the primary use of palm kernel shells is as a boiler fuel supplementing the fibre which is used as primary fuel. In recent years kernel shells are extensively sold as alternative fuel around the world. Besides selling shells in bulk, there are companies that produce fuel briquettes from shells which may include partial carbonisation of the material to improve the combustion characteristics.

Palm kernel shells have a high dry matter content (>80% dry matter). Therefore the shells are generally considered a good fuel for the boilers as it generates low ash amounts and the low K and Cl content will lead to less ash agglomeration. These properties are also ideal for production of biomass for export.

As a raw material for fuel briquettes, palm shells are reported to have the same calorific characteristics as coconut shells. The relatively smaller size makes it easier to carbonise for mass production, and its resulting palm shell charcoal can be pressed into a heat efficient biomass briquette.

Although the literature on using oil palm shells (and fibres) is not as extensive as EFB, common research directions of using shells, besides energy, are to use it as raw material for light-weight concrete, fillers, activated carbon, and other materials. However, none of the applications are currently done on a large-scale. Since shells are dry and suitable for thermal conversion, technologies that further improve the combustion characteristics and increase the energy density, such as torrefaction, could be relevant for oil palm shells.

Torrefaction is a pretreatment process which serves to improve the properties of biomass in relation to the thermochemical conversion technologies for more efficient energy generation. High lignin content for shells affects torrefaction characteristics positively (as the material is not easily degraded compared to EFB and fibres).

Furthermore, palm oil shells are studied as feedstock for fast pyrolysis. To what extent shells are a source of fermentable sugars is still not known, however the high lignin content in palm kernel shells indicates that shells are less suitable as raw material for fermentation.